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An algorithm is proposed for constructing a control function for which the solution of a non-linear system of differential equations 
will go from its initial state to an arbitrarily small neighbourhood of a given final state. The problem of interorbital flight is 
considered. 0 2001 Elsevier Science Ltd. All rights reserved. 

Algorithms have been obtained [l, 21 for constructing control functions for which the solutions of linear 
and quasi-linear systems of differential equations will satisfy given boundary conditions. In this paper 
we investigate an analogous type of boundary-value problem for non-linear controllable systems in a 
bounded domain of phase space. 

1. FORMULATION OF THE PROBLEM 

The object of our investigation is the system 

x = f(x, u) 

where 

(1.1) 

x=(x’, . . . . x”)‘, XER”; u=(u’, . . . . d)*, UER’, rsn (1.2) 

r~[0, I]; fd3(RnxR’; R”), f=(f;, . . . . f,)’ 

ll4l< Cl ) Ml < cz (1.3) 

Suppose we are given the following states: 

x(0)=0, x(1)=x,; X,=(X;, . . . . x;)‘, ]]x,]]<C, (14 

Problem. It is required to find functionsx(t) E C’[O, 1); u(t) E C’[O, 1) which satisfy system (1.1) 
and conditions (1.3) such that the following relations are satisfied: 

x(0)=0, x(t)+ x, as t + I (1.5) 

We will call the pair x(t), u(t) a programmed motion. 

2. SOLUTION OF THE PROBLEM 

Let u1 E R’; u1 = (ui, . . . . ~4;) be a vector in the domain (1.3) satisfying the conditions 

fh,, u,)=O 

Using (1.2) we write system (1.1) in the form 

(2.1) 
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u,)(x’-xx:‘)+ i X(x,, 
j=l ad 

(2.2) 

where 

2=x, +ejtx-X,)’ ii=u, +8,(u-y); ei E(0, 1) 

ll~llc G 9 ll1’ll< c2 

We will seek a solution of the problem in the form 

X’(t)=U’(t)(l-t)+x;‘, i=l, . . . . n 

(2.3) 

(2.4) 

Uq+&)(l-~f)+U/, j=l, . ..) r (2.5) 

Substituting (2.4) and (2.5) into system (2.2), we obtain a system which may be expressed in vector 
notation as follows: 

(1-t)~=a+(1-t)Pu+(1-t)Qb+R(a, b, 1) (2.6) 

P=(q), i, j=l, . . . . n; R=(R’, . . . . R”)’ 

Q={qj), i=l, . . . . n; j=l, . . . . r 

Conditions (1.3), (1.4), (2.4) and (2.5) give 

Ila(M-t)+X,II<C,. Ilb(f,(l-0+~,IIcC2 

t E[O, 11; a(O)= -x, 

We change the variable 1 by the formula 

l-~=.?-OLT, TE[O, +=) 

(2.7) 

(2-g) 

where a > 0 is an as yet undetermined constant. Then system (2.6) and conditions (2.7) become 

E = G + #-Jpe-ar- 
dT 

a + aQe-a’6+aR(lf, F, 7); ‘c E (0, +-) (2.9) 

II Z( r)emar +x,(I<C,, pi(r)e-a~+u,p* (2.10) 

Z(O) = -x, ; T E (0, + 00); E(z) = u(r(~)), i;(z) = b(r(@) 

We introduce variables c(z) and d(z) by the relations 

Z(z) = c(qeaT, b(@ = d(qear; r E [0, +a.) (2.11) 

Substituting expressions (2.11) into system (2.9) and taking conditions (2.10) into consideration, we 
have 

dc _ m-UT pc + ae-aT 

x- Qd + R(c, d)eeQT, ‘5 E [0, + -) (2.12) 
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Ilc(r)+x,II<c,, IldcT>+U,II<C~; rE[O, +m). c(O)=-X] (2.13) 

Along with (2.12) we consider the system 

dc -== 
dr 

-aT PC + ae-aTQd, T E [0, + =) (2.14) 

We will seek a vector function d(z) that will guarantee exponential stability of system (2.14). 
Let qi (throughout this section, i = 1, . . . , r) denote the ith column of the matrix Q. We construct the 

following matrix 

S= (q, . ..) P’l-‘$* . . . . &, . . . . Pk’-‘qr) (2.15) 

where ki is the maximum number of columns of the form qjii, Pqj, . . . , Pk’-‘qi such that the vectors 
qt, Pt&, . . . , Pk’-‘ql, . . . , qr,, . . . , Pkrelqr are linearly independent. If the rank of matrix (2.15) is n, then 
the transformation 

reduces system (2.14) to the form 

c=sy (2.16) 

- = &p&-aTy + &'Qe-a'd 4 
dr 

(2.17) 

The matrices S-‘PS and K’Q have the form [l] 

S-‘PS=(& es, . . . . z&,, &,, . . . . &_,+z* *‘*. &,* & , 1 

q = (0, . . . . I, . . . . o):,, (I - in theith place) 

F&, q-g;,, . . . . -gy, t.., -g;;, . . . . -g$-‘, 0, . ..* o>;,, 

p’iq; = - 

(2.18) 

(2.19) 

S-‘Q=(Z,. . . . . e,,,, . . . . $+,); Y=k,+...+k,_, (2.20) 

The constants g/i (j = 0, . . . , kl -1) . . . , g;. (j = 0, . . . , ki -1) in (2.19) are the coefficients of the 
expansion of the vector Pk’qi in terms of the vectors Piql(j = 0, . . . , kl -1) . . . , P’qj(j = 0, . . . , ki -1). 

Consider the problem of stabilizing a system of the form 

d7 
($, . . . . i!&‘! , , iti )ae-aTYk, + $ ae-aTdi 

where 

y&; = ( y:, . .. ‘1 ,$ I;, Xi 

e’t = (0. . . . . 1 I . . . . o&, (1 - intheithplace) 

= 
g,, =(-g& . . . . -g;#?;,.,. 

d=(d’, . . . . d’)’ 

(2.21) 

In scalar form, system (2.21) may be written as 
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4:. - = -magii e-a7y:i + ae-d' 
dr 

4% 
I = apty;i 

dr 
- agii e-“y$ 

* . . 

dyt -’ 
A = (levalyG 4 - agki 

dr 
hi -2e-a7y:j 

dy: 
A = apsaTy$ -I - agki 

dr 

hi -le-aTy;; 

(2.22) 

Let ykkf = 
I 

a$. Using the last equation of system (2.22) and induction, we have 

$ = o(ki yf 

hi -I 
Yki 

=aki-learWfl) +g$-laki,,, 

y$-’ = a ki-2e2aTW(2) + cak, -le2ar + ak;-learg~-l )wtI) + gt$-2aki ,,, 

. . . (2.23) 

Yii 
= ae(ki-l)ar 

w 
(hi-11 

+ qi -2mw 
(ki -2) + 

. . . + q (z)t~P + aki g:, y 

Differentiating the last equality of (2.23), we obtain from the first equation of system 
(2.22) 

w (hi) +~ki_,(g)~‘ki-I)...+~O(~)~ = emkiaidi (2.24) 

The functions rki_2(2), . . . , r,(~) in (2.23) are linear combinations of exponential functions with 
exponents not exceeding (ki - 1)ac The functions Q+(T), . . . , E,,(T) in (2.24) are linear combinations 
of exponential functions with non-positive exponents. 

Let 

We put 

u i = e-kiaTdi (2.25) 

u i =,cl (Eki_j(~)-_ki-j)~‘ki-j’ (2.26) 

where ykii(j = 1, . . . , ki) are chosen so that the roots h& . . . , AZ. of the equation 

hki +y ki_,Pl-’ +...+yo =o 

satisfy the conditions 

tiki f hii, i # j; Aii C-(2ki+I)a-1; j=l, . . . . ki 

Using relations (2.16), (2.22), (2.25) and (2.26) we obtain 

d’ = ekiar6ki Tk;‘Sk;c 

(2.27) 

(2.28) 

where 

hki =(cki_,(r)-yki+ . ..* e,(T)-yo) 
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Tki is the matrix of system (2.2), that is, Y# = (@‘-‘), . . . , 
the corresponding kj-rows of the matrix S-‘. 

w)'; yk, = TkiiJ; S$ is the matrix consisting of 

Substituting expressions (2.28) into the right-hand side of system (2.14), we conclude that its solution 
c(z) with initial data 

has the limit 

c(0) = -X, (2.29) 

Consider system (2.12) closed by the control (2.28), assuming in addition that its solutions satisfy 
initial condition (2.29) and constraints (2.13). It can be represented in the form 

dcld,t = A(r)c+g(c, T) (2.31) 

where 

Conditions (1.2), (2.2), (2.13), (2.3) and (2.28) g uarantee the existence of constants L > 0 and 
M > 0 such that 

Ilgcc. r>/ s LeMar11c~12; M > 2k, 

In addition, it follows from (2.27) and (2.30) that the system 

dcld7 = A(r)c 

is exponentially stable. 

(2.32) 

(2.33) 

We make the change of variables in (2.31) 

c(t) = z(r)F”al 

As a result, we obtain 

(2.34) 

dz/d~=BCz)z+gl(z, T) (2.35) 

z(O) = -XI (2.36) 

B(r)= A(T)+ MaE; g,(z, ~)=e~~~g(ze-~~~, T) 

where E is the identity matrix. Using relations (2.32) and (2.34), we have 

ll&k QlI s 4l# (2.37) 

Obviously, for sufficiently small a > 0, the exponential stability of system (2.33) implies that of the system 

dzldT = B(T)z (2.38) 

with exponent -I3 = -h + aM, where -h is the exponent of exponential stability of system (2.33). 
Let a(t), Q(O) = E be the fundamental matrix of system (2.38). The solution of system (2.35) with 

initial data (2.36) which remains in the domain 

II z(z)e-Ma’+XII)< Cl, rE[O, +w) (2.39) 
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takes the form 

By the limit (2.30), we obtain 

where K is a constant which generally depends on B. 
Let us replace inequality (2.39) by a stronger one 

It follows from relations (2.37) and (2.40) that 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

A = UC, +,ll> 

whence, from known results [3], we have 

llzcr,ll c Ke-“‘lb, 119 P = P - KA (2.44) 

Let us assume that 

/.~=p-KA>O (2.45) 

Suppose x1 and u1 satisfy that conditions 

(K+l)]1+C, (2.46) 

~~~t(O)~~‘(O)~~‘~~KII~III+Il~Ill< c2 

If we substitute the functions (2.40) into formulae (2.34), (2.28), (2.11), (2.4) and (2.5), then, by the 
derivation of Eqs (1.2), (2.6), (2.9) and (2.12), whose legitimacy is guaranteed by conditions (2.46), (2.42), 
(2.39), (2.13) (2.10), (2.7) and (2.3), we obtain the solution of the problem in question. 

On the basis of these arguments, the following theorem holds. 

Theorem. Let Ct, C2 and a be numbers, x1 and u1 vectors and K a constant (defined by quantities 
&(i = 1 ,...) r;j= l)..., ki) satisfying inequalities (2.27)) f or which conditions (2.1), (2.45) and (2.46) 
hoid, and suppose moreover that matrix (2.15) is non-singular. Then a solution of the problem formulated 
above exists which reduces to solving the stabilization problem for a linear stationary system, integrating 
system (2.35), (2.36) and then returning to the original variables t, x by using formulae (2.34), (2.11), 
(2.12), (2.5) and (2.4). 

3. SOLUTION OF THE PROBLEM OF INTERORBITAL FLIGHT 

As an illustration of the proposed method, we present the solution of the problem of steering a point 
mass of variable mass m(f), moving in a circular orbit of radius r. about a mass M with constant angular 
velocity a0 in a central gravitational field, to a given point in the orbital plane. As control we choose 
the reactive force. The system of equations in deviations relative to the above motion in a circular orbit 
is [4] 

XI =x2. 4 = v,(x,, .Q)+q 

X3 =X4, X4 =v2(X1, X2, X~)+V~(XI)U~ (3.1) 

where 
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X, =r-ro, x,=k, xg =v-a,t, x4 =*-a, 

q=arrizlm, u2=avri/m 

V 
v, =- 

C-q + ro)* 
+(x, +rO)(x4+ao)* 

v =_2x2(x4+aO) 1 
2 

XI + r, 

) v3=- 

XI +‘o 

i is the radial velocity of the point, v is the polar angle, $ is the rate of change of the polar angle, 
a, and f,,, are the projections of the relative velocity vector of the deviating particle on the direction of 
the radius and the transversal direction, respectively, and v = v”M, where v” is the universal constant 
of gravitation. Conditions (1.3), (1.5) and (2.1) become 

11x11< c,, x = (x,, . . ., x4 Y; ~~u~~ c c2, u = (u,, u2>* (3.2) 

x(0)=0; x(r) _-)x1 as t + 1 

x’ =(xf, x;. xi, xy, u’ =@I, u;>* 

x; =o, XI, =o; u; =-v,(x;), u; =-1 V2M =-J 

V3 (x, 1 
(3.3) 

The constraints (2.3) and the matrices P, Q and S on the right-hand side of system (2.12) may be 
written as follows: 

l[x’++c,, p++c2, c=(c,, . . . . c,), d=W,, d2) 

0 100 0 0 010 0 

p= a*1 o o ‘24 0 0 0 I , Q= ; ;, S= ; i ; ‘r 

0 

0 0 0 ajz 0 PO ' PO a42 ’ 

a24 = a42 - -$xl), PO =v,(xf) 
2 

(3.4) 

Obvious?, PtS f 0 for all xi, xi. This implies that system (2.14) is stabilizable, irrespective of the 
choice of x1, x3. 

After solving the stabilization problem for system (2.14), we use formula (2.28) to find functions 
d, and d2 for which system (2.14) closed by them, is exponentially stable with exponent -A(a) c 0 for 
all a E [0, +-). Estimating the mixed second partial derivatives of the right-hand sides of system (3.1) 
with respect taxi (i = 1, . . . ,4) and Ui (i = 1,2), taking constraints (3.4) into consideration, and assuming 
that a is chosen in a bounded domain, we obtain the constants M and L. Solving the inequality 
-h(a) + aA4 < 0,we find the constant 

-j3=-h(a,)+a,M<O 

After estimating the norm of the fundamental matrix of system (2.38) (this may be done using an estimate 
of the fundamental matrix of system (2.14), closed by the stabilizing controls), we obtain the constant 
K. We then choose xi, xi so that conditions (2.45) and (2.46) are satisfied. 

At the concluding step, we solve a Cauchy problem for system (2.31) with initial data (-xi, 0, -xi, 0) 
and return to the original independent variable I by formula (2.8). As a result, we obtain a pair of 
functions 

satisfying system (3.1) and conditions (3.2). 
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4. N U M E R I C A L  M O D E L L I N G  

In  the process of  numer ica l  model l ing,  the following auxiliary system was in tegra ted  

Jl = x 2 .  -~2 =Vl(xl  + x l ,  x4)+Ul +tt l ,  -~3 = x 4 ,  -~4 = v 2 ( x l  +x~, x 2, x 4 ) + v 3 ( x  I +x~)u  2 

where 

v (x~ +ro)ao 2 
"~ = (xl +to)  2 

ao=/~---~c -I, x~=100, 
vr6 

ro = 7.106 M, x~ =tXo-iO -6 

in the interval [0, 0.99] with initial data 

xl(0)=-xl, x2(0)=0, xa(0)=-x~, x4(0)=0 

closed by controls 

/ 
= -- 3---~'42 [a42e2Ctt~((y 2 - 6)(X-- ul 

-- ("l't -- I l))x I -- ('Y2 -- 6)OL2a42eC~x2 + 6e3W~x3 ] 

6 

102xxj 0 ~ . ~ m / s  

1.0 

/ 
/ \  

- \  

lO s ~<x4, S -I  

o5 :2 
0 0.5 t 1.0 

Fig. 1 
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4eaT 
u2 = - - b42xl - x4 ) 

UP0 

a = y4, y2 =3a, y, =2a2 -a2eganYu 

Y23 = a2l + =24=42 

Figure 1 shows graphs corresponding to the required functions of the phase coordinatesxr(t),~~(t),x~(t),x~(t), 
and the controls u](t), Qt), which are programmed motions for system (3.1). 

A preliminary analysis of the results of the modelling process enables us to draw the following conclusions: 
(1) the greatest energy resources demanded by the control are expended for u,(t) and they depend directly on 

xi and the time of the motion; 
(2) the constant L is of the order of lO4, and the choice of the quantity a therefore presents no particular 

difficulty; 
(3) the problem of interorbital flight is easily solved using personal computers of average capacity. 

The computer modelling was carried out by V E Amtfriyev. 
This research was supported financially by the Russian Foundation for Basic Research (97-01-01188). 
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